La longitud de la circunferencia (o perímetro de una circunferencia) L es igual a dos veces el radio (r) por π, o lo que es lo mismo, el diámetro (D) de la circunferencia por π.
El concepto “longitud de una circunferencia” es igual al del “perímetro del círculo” y miden lo mismo.
Ejercicio 1
Sea una rueda de bicicleta de radio r=30 cm. Se desea medir cuánto espacio recorre cuando la rueda da una vuelta, es decir, cual es la longitud de la circunferencia (en este caso del exterior de la rueda).
Ejercicio 2
Supongamos, para simplificar, que la Tierra es esférica y que su ecuador tiene una longitud (L) de 40.000 Km. ¿Cuál seria, en este supuesto, el radio terrestre?
A partir de la fórmula de la longitud, veamos como se relaciona el radio (r) con la longitud (L):
Ahora sustituyendo podemos calcular el radio.
Obteniendo que el radio de la Tierra es de 6.366 Km.
¿Sabías que el famoso número pi (π), (la relación entre la longitud de una circunferencia y su diámetro), ya tenia una aproximación de cinco decimales en la Babilonia del siglo XX antes de J. C.
Los matemáticos griegos intentaban resolver la cuadratura del circulo (construir un cuadrado cuya área sea igual a la de un círculo dado).
En la misma época, Arquímedes, a base de dos polígonos regulares de 96 lados, uno inscrito y otro circunscrito, llega a un valor de π = 22/7, aproximación muy importante para su época.
Después, muchos matemáticos han buscado el valor de π, hasta que Lambert, en 1768, demuestra que π es un número irracional y en 1882, Lindemann demuestra la imposibilidad de la cuadratura cel círculo.
Con la utilización de potentes ordenadores se ha llegado hasta 206 millones de decimales.
La función PI de Excel (hasta la versión actual Excel 2016) devuelve un valor de π con una aproximación de 15 decimales.
Una aproximación razonable para resolver ejercicios es π = 3,1416.
0 comentarios: